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On the boundary conditions at an insulating wall for 
hydromagnetic waves in a cylindrical plasma 

By L. C .  WOODS 
Engincering Laboratory, Oxford Univrrsit?; 

(Keccivd 16 May 1963 and in revised form 1 October 1963) 

The order of the dispersion relation for the propagation of hydromagnetic waves 
along a magnetized cylindrical plasma falls by unity when the plasma resistivity, 
rl, tends to zero. A consequence of this is that the two boundary conditions 
necessary on an insulating wall are reduced to a single condition, a reduction 
brought about by the development of a current sheet. If the ratio, Q 3 w/(oc i ,  
of the wave frequency to the ion cyclotron frequency is also assumed to be 
vanishingly small, then the nature of the single boundary condition to be 
adopted in the limit v--l-+ 0 depends, for the slow hydromagnetic wave, on the 
limiting value of aBQ2. Similarly, if Q + 1, and the fast hydromagnetic wave is 
being considered, then the relevant boundary condition is found to depend on 
the limiting value of Qd. 

The ‘resistive’ waves that are found to accompany the fast and slow waves, 
in order to satisfy the boundary conditions for small but finite values of g-l, are 
studied in some detail and their contribution to the wave damping is determined. 

1. Introduction 
In  a previous paper published in this Journal (Woods 1962), a dispersion rela- 

tion was derived for the propagation of hydromagnetic waves along a magnetic 
field lying in the axial direction of a cylindrical, partially ionized plasma. The 
neutral gas was assumed to possess viscosity and pressure, while the ionized 
gas in addition to these properties had a resistivity cr-1. This complexity yielded 
a rather involved relationship between the axial wave-number k ,  the radial 
wave-number kc and the frequency (11, particularly as the ion-cyclotron frequency 
oci was also taken into account. The main effect of the neutral gas-which will 
not concern us in this paper-was to modify the Alfvkn speed, va = B,(,up,)-*, 
where B, is the steady axial magnetic field and po is the density of the ionized gas, 
by replacing po by po/s, where s is a complex number depending on the ion- 
neutral collision frequency and the ionization level (see (W 59)-equation (59) 
of Woods 1962). For the special case in which pressure and viscosity can be 
neglected, the case usually realized in hydromagnetic wave experiments (Jephcott 
& Stocker 1962)’ the dispersion relation reduces to (cf. (W 60)) 

[k2  - k%( 1 + idk?)] [kZ; - k3( 1 + iSk?)] = k2kq Q2, (1) 
where k: = w2/(v5s) ,  kZ; = k,2+k2 is the total wave-number, 6 f ( p ~ r ) - ~  (mks 
units), and Q = w/oci. For simplicity, in (1) we have not allowed for the anisotropic 
nature of the resistivity parameter 6, but it is easily verified from (W 60) that 
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a,, should replace 6 appearing in the singular perturbation theory given in $ 2  
of this paper. 

With the magnetic field B expressed in cylindrical co-ordinates ( r ,  P ,  z )  as 
B(r, P ,  z, t )  = B, n + B,(r) exp {i(m8+ kz - wt) } ,  (2) 

where n is unit vector along the z-axis, the theory gave for the components of 
Bl 

= k& + k2, and k,2,, kg2 are the roots of the quadratic in k; in (1). 
Suppose the plasma has a radius r,; then the boundary conditions a t  r = r, 

depend on the conductivity of the material that encloses the plasma: for infinitely 
conducting walls 

while for perfectly insulating walls, it  is shown by Woods (1962) that continuity 
of the magnetic field leads to 

B,, = 0 at r = r,, ( 5 )  

at r = r,, 
(m/ro) Bl, - kB10 = 

B,, + iX,B,, = 0 

where x', = K;(kro)/Km(kro). (7 )  

Equation (6a)  is equivalent to requiring the radial current to vanish. The electric 
fields are assumed to be screened by an electric dipole layer on the walls (see 
discussion in earlier paper). The intermediate case of finite conductivity has also 
been considered. 

Now for a given plasma, magnetic field strength B,, and frequency w ,  apart 
from the amplitude of the perturbations-which depends on the initial conditions 
-(3) contain five unknowns, viz. lz, kcl, kc2, and the amplitude ratios, 

a = d2/dl, c = e2/q1. (8) 
One restriction on Cr/c follows from (4), while (1) imposes two further relations 
between k, kcl, and kc2; consequently two boundary conditions can be satisfied. 
If only one radial mode is present, say that corresponding to k,,, then a similar 
argument shows t'hat only one boundary condition can be satisfied. Thus by 
( 5 ) ,  if the walls are infinitely conducting, each of the two radial modes summed in 
(3) can be propagated separately,t whereas with insulating walls both modes 
must be present so that (6) can be satisfied. 

Now suppose that the plasma resistivity is zero, i.e. 6 = 0;  then (1) will yield 
only one root for k:, and hence only one radial mode. Thus in this limiting case 

A remark t>hat asslimes that electric dipole layers are present, otherwise the modes 
are coupled by the vanishing of the t,angential electric field. Whether or not such layers 
do occur on highly conducting walls is not quite clear; however, experimentally i t  does 
appear that the two modes in (1)  can be propagated separately. 
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the two boundary conditions in (6) must be replaced by a single condition. 
This suggests that when 6 is very small, but not quite zero, a boundary layer will 
form providing a rapid transition in one or more of the magnetic field components, 
and so permitting both of (6) to be satisfied a t  the wall. Then in the limit 6 = 0, 
the boundary layer collapses into a current sheet. 

This point was not pursued in the earlier paper, because at that time most of 
the Culham Laboratory experiments (Jephcott & Stocker 1962)' for which the 
theory was developed, involved waves with negligible B,, and B,, fields, so that 
it was necessary to satisfy only (6a) .  However, recent experiments on fast waves 
in insulating tubes involve relatively large B,, and B,, fields, and so require the 
analysis to be taken further for the special case when 6 is small but finite. Of 
course the three relations between a ,  c ,  k, kc,, and lc,,, mentioned above, together 
with (6), provide a means of finding the solution for the general case, but this 
would necessarily be a numerical rather than an analytic solution, and would 
throw no light on the limiting case described above. 

2. The boundary condition for small plasma resistivity 
On ignoring a term of order d2, (1) can be writtent 

1:Sk '4 ,k&+{k2Q2+k5-k2- i6k~(3k: -k2) }k~+  kF4(k2-kF4) = 0. (9) 
If e is small iex2 + bx + c = 0 has approximate roots - c/b,  ible; so (9) has the 

kf2 z - i (k2 -  k$ - k2Q2)/(6k5) .  (11) 

For simplicity we shall neglect here the effect of the neutral gas and take 
ki to be real. Let r , & ,  li, and 5 denote real numbers defined by 

For the wave to be propagated a significant distance, we require that c 4 4 ;  
assuming this to be the case and neglecting second-order terms, we find from 
the first of (10) that 

k = + i s ,  k,, = kc - ic. ( 1 l a )  

1 1 ~  = k i / h  - +k,2 G/2h, (12) 

+ ( c k c / 2 r ) { 1  -t-G-'(2k5-hk;)}, (13) 

where h = 1 - Q2, G = (k; h2 + 4k>Q2)4. (14) 

6 = (k%6/2qh2) { (3 -h)  k;+&hk,2& &G-1[8k>Q2+hk~(hk ,2+3Q2k~) ] }  

The positive sign in (13) gives a 'slow' wave and the negative sign a 'fast' wave. 
To first order (1  1) becomes 

(15) 

(16) 

2iAJ (fast wave) ' I r2h - k; - %A,Z (slow wave) p2 = -i- - 
6k5 - [ 

where A, E & { ( h k ~ + G ) / 6 k ~ } * ,  A, = &{(G-hk,2)/6k'i}4. 

From (1) this approximation is eqiiivalent to the restriction wp/al3: Q 1, which 1s 

satisfied in the experiments reported by Jephcott & Stocker (1962). However in an 
earlier paper by Klozenberg, McNammara & Thoneman (1963) the case wp/aB;  % 1 is 
investigated theoretically. This case is important for waves of much higher frequency 
than considered in this paper. 

26-2 
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Hence (1  - i) A,  (slow wave) 

where, as the plasma resistivity is assumed small, both A, and A, are large 
numbers. When !2 is small 

A, z (kc /kA)  ( 2 ~ 9 - 3  and A,  z (k,/k,) Q(28)-&. (18) 
Prom the asymptotic form of the Bessel functions we have for the fast wave 

(19) 

where 

provided, of course, that r =+ 0. Also Jm(kC2?) N i l$(r).  It now follows from (6), 
( 7 )  and (S), that  when 6 is sufficiently small to make A,r, large, the boundary 
conditions for insulating walls can be expressed in the form 

} (21) 
J:,+A,{(k~+~~,)/k,,}J, = l$&) {c-AlaAf(l  -i)], 

kJ&+{Ic,,X, +&/kc,} J ,  = q ( ~ 0 )  {~A2/[~,(l-i)I-X,aAf(l-i)}, 
where A, = (m/kro) (d1/%,), A, = (m/r,) (el/&,), and the argument kclr0 of 
the Bessel functions has been omitted for brevity. The corresponding boundary 
conditions for the slow wave are obtained by replacing A,( 1 + i) by A,( 1 - i) in 
(20) and (31), but notice from (18) that at low frequencies, for the asymptotic 
theory to be valid in this case, 8must be small enough to satisfy (28)s < (kA  ro !2/kc). 

a/c = (V1/dl) (k2- k; - i8k,22ki)/(kk,22 Q) = (2?,/d1) kQ[Af(  1 - i ) ] - 2  < 1 

From (4), (8) and (11) 

and hence on eliminating F, from (21) one finds 

where Zf = (V1/d1) (m/rok - x, !2)/3Af. (23 )  

As A, has been assumed large, If 4 1 unless (Vl/dl)  is large. From (4) and (12) 
we find that for the fast wave there are no critical frequencies or wave-numbers a t  
which (%,/d,) is unduly large, and so Z, is small, except perhaps at high fre- 
quencies. Thus in evaluating it we can neglect the small imaginary parts of k 
and kcl. To first order then, by (4) and ( l l a )  = Q ~ / ( k : + ~ ~ ) / ( k i - r 2 ) ,  
and using (12)  to eliminate q2 from this expression (take the negative sign in (12)) 
and then substituting the result in (33) we find 

I f  = 2rQk%d'&(G+hk:)-% - -Xm!2  , (24) 

The corresponding boundary condition for the slow wave is like (22) except 

(:; 1 
where A, has been eliminated by (16). 

that (1  + i) I ,  is replaced by (1  - i) I,, where 

Z, = $(r/Q2) k238*(G+ hk:)t [m/(r,r) - X,, a]. ( 2 5 )  

Notice that as (G+ hk:) -+ 2k: when !2 -+ 0, and k, = w/vA, I f  tends to zero like 
w4 a t  small frequencies, whereas I ,  tends to infinity like w4. 
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In  ( 2 2 )  we now have one combined boundary condition from which kC1 = k, - i< 
can be determined. When I f  is small, the dominant condition is the vanishing of 
the first term in curly brackets, which corresponds to ( 6 b ) ,  whereas if lf is large, 
as is possible a t  high frequencies, the vanishing of its bracketed coefficient is 
the dominant condition, corresponding to (6a). For the slow wave the dominant 
condition is (6a) at low frequencies and ( 6 b )  at high frequencies. The imaginary 
part of kcl, i.e. <, is likely to be largest when I f  and 1, are near unity in value, and 
by (13) the wave attenuation is likely to be largest in this case. 

3. Axisymmetric waves (m = 0) 
If m = 0 the theory simplifies a little, and as this is an important case in 

experimental work, we shall consider it in some detail in this section. The 
analysis to he given below could easily be extended to the more general case 
of ,m + 0. 

When m = 0 ( l l a )  and (22) give 
(71 + ic) (1 - I f  - i lf)  J l [ (kc -  i<) r,] - (kc- i<) X,J,[(lc,- i<) r,] = 0, (26) 

where So = - K,[(T + ic) r , ] / [ ( ~  + i ~ )  r,] and lf is a function of k, and q. Equa- 
tion (26) provides two relations from which the values of k, and < can be deter- 
mined. If €, 

(27) 
where the argument of the J’s is k,ro and of X, is Tr,. The real and imaginary 

and I f  are assumed small it can be written 

( ~ + i e )  (1 -Zf-ilf) (Jl-i<roJ~)+(,%,-i<) (X,+icroS;))  (Jo+i<roJl )  = 0, 

parts of (27) yield 

and < ~ 0 { 1 + 4 Y +  l / f ( Y )  +z%Y))-x{b(Y) + (c/T)Yf’(Y)/f(Y)) = 0, (29) 

where f ( Y )  = KdY)/{YKo(Y)l, x = k Y 0 ’  Y = T o -  (30) 

Zf(y) = 2 @ Q 2 b 2 f ( ~ )  (k%&)&{2[b2 - hy2]}-g, (31) 

y2 = b2/h - 4x2 - (h2x4 + 4b4Q2)*/2h, ( 3 2 )  

From (12) and (24) 

where b = kAr0. Equation (12) can be written 

and the problem is now reduced to that of solving (28) and (32) simultaneously 
for x and y; the solution will depend on the three non-dimensional numbers b, 
Q, and (k$&)*. 

When x and y are found, (13) and (29) yield for the damping ratio 

7 2h2y2Q 
€ k2,6 
- = -~ ((2 - h) b z +  +hx2 - 4[8b402 + hx2(hx2 + 2b2Q2)] [h2x4 + 4b4Q2]-*} 

+ ( Q 2 - l ) x  21 f( Q(2b2 - 2hy2 - hx2))-l, (33) 
where (34) 
Notice that the additional damping due to the imaginary part of the radial wave- 
number, kCl, is proportional to (,%%&)* so that a t  small resistivity and large AlfvBn 
wave velocity, vA, this component would be the dominant term in (33) except 
near the critical frequencies Q = 1 and w = k,v, (see discussion by Woods 1962 
of the damping near these frequencies). The condition E / Y  < 1 imposed in $ 2  
requires that the critical frequencies be avoided and that kA&* < 1, i.e. that 
(wp/aBi)a < 1, see footnote on p. 403. 

Q = 1 +f’hx2y(2b2 - 2hy2 - hxZ)-l{ 1 + x y 2  + (1 + x/g)f}-l. 
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Now consider the slow wave under such conditions that the parametJer 
is large. By (25) and (30), 

By the same type of analysis as that used for the fast wave, corresponding to 
( d 8 ) ,  (29) and (32) we find 

I, = & ( ~ b 4 ) - l y 2 f ( y )  (k: S)* { r i  G: + hxz}$. (35) 

6 0  = ~f(Y)/21,> 
and yz = b2/h - +x' + (hZx4 + 4b4Qz)1/2h. 

From (13) and ( 3 7 ) ,  the additional damping, c* say, due to cis 
€* x2 
- = --f(y){1+(2E;-hhE,2)/G) 
7 2Y24 

(36) 

( 3 7 )  
(38) 

(39) 

and a t  small values of Cl (13) and (39) yield 
€17 = k ~ S ( k ~ + k , 2 ) / 2 q z +  2 Q k ~ / r o 7 4 k ~ E , S : .  (40) 

The condition + 1 is met if (Qk:/k,2) < kA4& 4 1, and the first of these in- 
equalities is a consequence of I, 1. For the case, ls < 1, which corresponds to Cl 
remaining finite and 6 tending to zero, we need only replace I, in (28) and (29) 
by I,$ and - I,?, respectively. 

4. The effects of electron inertia 
The singular perturbation problem studied in this paper arises from the fact 

that putting resistivity equal to zero lowers the order of the differential equation. 
That this is a consequence of being able to neglect electron inertia and hence 
to admit the possibility of current sheets, in the theory of hydromagnetic waves, 
can be shown as follows. Let j be the current and n the number density of 
electrons; then inclusion of electron inertia adds a term (mc/e2n) aj /at  to j/rr in 
Ohm's law. Thus for oscillatory perturbations the coefficient of j is changed from 
r1 to u-l- i(wm,/e2n), and in place of 6 there is now 

6 = ( r r p U - 1 -  i(c/wpp)Z, (41 1 
where c is the speed of e.m. waves and wpc is the electron plasma frequency. 

I n  the limit rr-+ a, S --f - i ( c / ~ ~ ~ ) ~ ,  and as a consequence k,, + R,(w,Jc), 
and (1  + i) I, --f R,(c/w,,), where R, and R, are real numbers. Thus the limit 
6 = 0 is not theoretically attainable, although for hydromagnetic waves electron 
inertia is negligible and the limit is practically attainable. 

5. Expressions for the magnetic field strength 

bations are given by 
From (3), (S), (20) and (21) we find that for m = 0, the magnetic field pertur- 

(42) i 
4, = 4 { l c , l  J O ( r C , l  r )  - PT(d1, 
BlO = - g l { J a k c l r )  - JXkc1rlJ W)),  
4, = i ~ ~ l { J & r )  - (sic) J&1ro) Tfr)) 

M i k d ,  J;( Ic,, T )  , 
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where 

and 
For the slow wave replace Af( 1 + i) and I f (  1 + i) by A,( 1 - i) and Z,( 1 - i). The 
additional wave appearing in B,, and Bl, can be appropriately termed the 
‘ resistive ’ wave; its effect on B,, is negligible, while its effect on B,, and B,, is only 
important near the boundary. 

27 = ~ ~ / & ( k r o ) l  J&,ro) + ~ C l J ~ ( ~ C 1 ~ 0 )  

T ( r )  = exp{- ( l - - i ) ~ ~ r ~ ( l  -r/r,,))(r,,/r)*. 
= {k/Xo(kro))  (1 + i )  lfJb(kclro), using (26) (43) 

FIGURE 1. Fast wave, I, < 1. 

(i) Fast wave: lf 4 1 
For this case 2 is small and so is the contribution of the resistive mode to 
Biz. As T(ro)  = 1,  Blu = 0 at r = r,,, no matter how small the resistivity is, and 
the effect of the resistive mode on Blu is quite large as shown in figure 1. 

The axial current is (see (W 38)) pjl, = 5??l{kJ,,(kclr) + ( 1  -i) AfJ&.,r) T(r)}, 
which becomes very large a t  r = r,,, matching the rapid fall in Blu. Thus the in- 
sulating wall appears to behave like an infinitely conducting wall, by producing 
large axial currents in the plasma adjacent to it. However, from (3) and ( 5 )  
it follows that for an infinitely conducting wall Blr, and as a consequence B,, 
(recall that m = 0 in the present discussion) tends to zero smoothly a t  r = ro, 
while B,, has a discontinuity, corresponding to an azimuthal current sheet, a t  
r = ro. The cases are therefore quite different. 

(ii) Slow wave: 1, > 1 
In this case, as 9 remains finite it follows from (43) that Jh(kclro) z 0 ,  and so 
9 kclJo(kclro),  and 

B,, = - Q f l ~ c l { J o ~ ~ c , ~ ~  - J o ( k ? , ~ , , )  T(r) } ,  B,, = VlJh(k1~). 
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The situation is now that the resistive mode has a big effect on B,, near the wall, 
but little effect on B,, and B,, (figure 2 ) .  It is this case that corresponds closely 
to the conducting wall case-paradoxically, the case that arises when the resis- 
tivity is not zero, but is large enough to satisfy the inequalities 

(4.2) *f(kATO) (r"k.,)2 > T&&.) f t ( 2 W  9 1, 

which follow from (IS), (35) and AsrO 9 1 ,  B 1, CJ 6 1. 

0 

Resistive mode 
absent 

I 

FIGURE 2. Slow wave, I ,  $ 1. 

The magnetic field distributions for the two other cases, viz. (iii) fast wave, 
Zf $ 1 and (iv) slow wave, Zs < 1, will resemble (ii) and (i), respectively, except 
that the relative amplitudes will not be as shown in the figures. In  (iii) B,,, 
B,, % Ble, while in (iv) B,, B B13, B17, except near the critical frequency 0 = 1. 

Drs T. E. Stringer and R. J. Bickerton of the Culham Laboratory, Berks. 
have made substantial contributions to my understanding of the problem treated 
in this paper. 
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